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Abstract

Software systems have become increasingly distributed,
dynamic and mobile. The complex state and dynamic inter-
faces of software components and their concurrent interac-
tions provide challenging research issues in system speci-
fication and design. An effective combination of structured
state-based formalism and dynamic action-based calculus
may be a good solution for modeling complex distributed
mobile systems. In this paper, we investigate the semantic
links between Object-Z and �-calculus and consequently in-
troduce a powerful specification technique PiOZ that brings
the strengths of the two together. The operational seman-
tics of PiOZ integrates state transition semantics of Object-
Z and �-calculus reduction rules. The typing rules of PiOZ
are developed and reasoning of a system property is pre-
sented.

1. Introduction

Software systems have become increasingly distributed and
mobile. The complex state and dynamic interfaces of soft-
ware components and their concurrent interactions pro-
vide challenging research issues in system design and im-
plementation. Although some specification techniques can
support dynamic communications and mobility, such as�-
calculus [18, 17], they generally cannot scale up for mod-
eling the data and state of complex distributed systems. On
the other hand, state-based formalisms such as Z [31] and
Object-Z [7, 23], are powerful specification techniques for
capturing complex data and states; however, they are weak
for capturing the dynamic communication configurations
for distributed systems. The usual technique for modeling
complex systems is the multi-viewpoints approach [10, 19].
However, the problem of consistency issues between differ-

ent viewpoint models (represented in different formalisms)
can only be clearly resolved by working out the semantic
link/integration between those meta notations.

An effective combination of structured state-based formal-
ism and dynamic action-based calculus may be a good
solution for modeling complex distributed mobile sys-
tems. In this paper, we investigate the semantic links
between Object-Z and�-calculus and consequently intro-
duce a powerful specification technique PiOZ that brings
the strengths of the two together. In our approach, the fun-
damental semantic link is to treat the Object-Z operations
and �-calculus processes as the same semantic and syn-
tactic entity. The consequence of this semantic link is that
complex operations can be defined by composing sim-
ple operation schemas by using�-calculus process opera-
tors (parallel, choice and sequential). Furthermore, we en-
force that all communications between objects are through
type safe�-calculus channels. The communication inter-
face of PiOZ objects are defined by channel-typed state
variables (treated the same as other state variables) so
that the dynamic communication interface change is cap-
tured by the channel-typed variables’ state change. For
instance, the�-calculus input guard (binding opera-
tor) is given a state-update semantics. As a result, the
formal operational semantics of PiOZ integrates state tran-
sition semantics of Object-Z and�-calculus reduction
rules, providing a foundation for derivation and reason-
ing system properties in PiOZ. From the state point of view,
PiOZ extends Object-Z with�-style dynamic communi-
cation capabilities. From the event point of view, PiOZ
class model contains all possible�-style instance level re-
ductions; that is one�-style reduction represents one
possible state-change trace (animation) of the PiOZ ob-
ject’s behaviour. The typing rules of PiOZ can also
be constructed based on�-calculus and Object-Z typ-
ing rules.



The paper is organised as follows. First,�-calculus and
Object-Z are briefly introduced. The advantages and dis-
advantages of the two notations in modeling data/state and
communication aspects are illustrated by using a common
example, message passing between stations and a car (an
extended and modified version of Milner’s mobile phone
system [17].) The semantic links between�-calculus and
Object-Z are discussed, the integrated notation PiOZ is in-
troduced. In Chapter 4, typing rules of PiOZ are developed
and Section 5 presents the integrated PiOZ operational se-
mantics with a derivation (�-style reduction). Chapter 6
presents a verification of a system property for the PiOZ
model. Finally, a discussion of related work and conclusion
is presented.

2. �-calculus and Object-Z

In this section we provide overviews for the�-calculus and
Object-Z.

2.1. �-calculus

The �-calculus is a widely accepted model of interacting
systems with dynamically evolving communication topol-
ogy.�-calculus allows channels to be passed as data along
other channels, and this introduces a channel mobility. An
important feature of the�-calculus is its mobility expressed
by the changing configuration and connectivity among pro-
cesses. This mobility increases the expressive power en-
abling the description of many high-level concurrent fea-
tures.�-calculus has a simple semantics and a tractable al-
gebraic theory.
The computational world of the�-calculus contains just
processes (also called agents) and channels (also called
names or ports).�-calculus models networks in which mes-
sages are sent from one site to another site and may con-
tains links to active processes or to other sites.�-calculus
is a general model of computation which takes interaction
as primitive. However the�-calculus is not suitable to de-
scribe state changes.
We present in this section the monadic version of the�-
calculus: this means that a message consists of exactly one
name. Let� be a infinite countable set ofnames. The ele-
ments of� are denoted byx� y� z � � � The terms of this for-
malism are called processes and processes are denoted by
P�Q�R � � � .

Definition 1 The processes are defined over the set � of
names by the following grammar

P ��� � � x�z��P � x�y��P � P � Q � P � Q �
�P � �x P

The process expressions are defined by guarded processes
x�z��P andx�y��P, parallel compositionP � Q, nondetermin-
istic choiceP�Q, replication�P and a restriction�x P cre-
ating a local fresh channelx for the processP. � is the empty
process.�-calculus replication�P can also be expressed by
recursive equations of parametric processes. The guards are
input guards and output guards. They represent sending and
receiving a message (name) along a channel. The output
guarded processx�z��P sendsz alongx and then, after the
output has completed, continues asP. An input guarded pro-
cessx�y��Q waits until a name is received alongx, substi-
tutes it for the bound variabley and continues asQ. The par-
allel compositionx�z��P � x�y��Q may thus synchronize on
x. Thus processes can interact by using names they share.
A name received in one interaction can be used in another;
by receiving a name, a process can interact with processes
which are unknown to it, but now they share the same chan-
nel name. The�-calculus mobility is coming from its scop-
ing of names and extrusion of names from their scopes.
There is an important distinction between input and output
guards. Output guard is a simple sending of a namez along
a channelx, but the input guard has a more complex ac-
tion: the name received along the channelx will replacey in
the process following the input guard. Input guard is abind-
ing operator involving substitutions. Inx�y��P, the namey
binds free occurrences ofy in P. In a second binding opera-
tor �x P, the namex binds free occurrences ofx in P.
Over the set of processes a structural congruence relation is
defined; this relation provides a static semantics of some
formal constructions. We denote byfn�P� the set of the
names with free occurrences inP, and by�� the standard
�-conversion.

Definition 2 The relation � over the set of processes is
called structural congruence, and it is defined as the small-
est congruence which satisfies

� P � Q if P �� Q

� P � � � P, P � Q � Q � P, �P � Q� � R � P �
�Q � R�,

� P � � � P, P � Q � Q � P, �P � Q� � R � P � �Q �
R�,

� �P � P � �P

� �x� � �, �x�yP � �y�xP,
�x�P � Q� � P � �xQ if x �� fn�P�.

The structural congruence deals with the aspects related to
the structure of the processes. The evolution of a process
is described in�-calculus by a reduction relation over pro-
cesses called reaction. This reaction relation contains those
transitions which can be inferred from a set of rules.

Definition 3 The reduction relation over processes is de-
fined as the smallest relation � satisfying the following



rules

�com� �x�z��P � R�� � � x�y��Q � R��� P � Q	z�y

�par� P � Q implies P � R � Q � R
�res� P � Q implies ��x�P � ��x�Q
�str� P � P�� P� � Q� and Q� � Q implies P � Q

The most studied forms of behavioural equivalence in pro-
cess algebras are based on the notion of bisimulation. There
are several definitions in the literature for bisimilarity; one
of them is called open bisimilarity. Its definition is given by
using the labelled transition system defined by the reduction
rules. Systems can be checked automatically by studying
the bisimilarity between two processes, namely the model
and its specification. More helpful in the verification pro-
cess is theweak open bisimilarity. It allows the basic veri-
fication technique for proving properties about mobile con-
current systems modeled in the�-calculus. In general, prop-
erties of finite state transition systems can be described in a
very powerful logic called�-calculus. Modeling and verify-
ing with this logic and some of its proper subsets have been
thoroughly investigated in [5]. Model checking�-calculus
Mobility Workbench[29] supports open bisimulation check-
ing.

Mobility: An example

The�-calculus is able to describe mobile systems, provid-
ing a conceptual framework and mathematical tools. The
word mobility is used with many meanings. The�-calculus
deals with the mobility given by links that move in a space
of linked processes. For example, hypertext links can be cre-
ated, can be passed around and can disappear. Or references
can be passed as arguments of method invocations in object-
oriented systems. Our example describes a simple interac-
tion between a handphone carried in a car and some base
stations. The system is described in Figure 1. The connec-
tions between our car (handphone) and the base stations can
change as the car is moving around.
We consider three processesB��B� andC corresponding to
two bases and the car respectively. We start with their paral-
lel compositionB� � C � B� described by the left picture of
Figure 1. The baseB� and carC are connected by a channel
talk andB� andB� by a channelswitch. This means thattalk
is free in bothB� andC, andswitch is a free name in both
B� andB�. By the process expression� talk �B� � C� � B�,
the nametalk is restricted toB� andC, and we interpret that
B� andC have an exclusive communication along the chan-
nel talk. If B� � switch�talk��B�

�
, then baseB� wishes to

send the name of channeltalk to baseB� along the channel
switch. Moreover, iftalk is not free inB �

�
(talk �� fn�B�

�
��,

thenB�

�
will lose its link toC. BaseB� is waiting for a chan-

nel name sent byB�, namelyB� � switch�y��B�

�
. Applying

the corresponding reaction rules, we have the transition

� talk �B� � C� � B� �� B�

�
� � talk �C � B��

�
�

whereB��

�
� B�

�
	talk�y
.

The initial process� talk�B� � C� � B� changes its commu-
nication topology and it becomes as it is described in Figure
1. Now B��

�
andC have an exclusive communication along

the channeltalk. This is essentially the mobility mechanism
offered by the�-calculus. More details are in [17].

Difficulty with state/system capturing

Note that�-calculus is an excellent tool for capturing a par-
ticular behaviour at instance level (e.g. the example above
only captures a partial behaviour trace of a communication
switch between two base stations and a car. However, one
may consider an arbitrary group of bases (instead of just
two bases), andtalk channel passed back and forth between
these bases. More importantly, one may consider the state
changes of base stations and the car (e.g. when a base sta-
tion passes a message to the car, that base should have one
less message in its collection and the car should have one
more message). These requirements are difficult or impos-
sible to be captured by the�-calculus.

2.2. Object-Z Overview

Object-Z is an extension of the Z formal specification lan-
guage to accommodate object orientation. The main reason
for this extension is to improve the clarity of large specifi-
cations through enhanced structuring.

Class

The essential extension to Z given by Object-Z is theclass
construct which groups the definition of a state schema and
the definitions of its associated operations. A class is a tem-
plate forobjects of that class: for each such object, its states
are instances of the state schema of the class and its indi-
vidual state transitions conform to individual operations of
the class. An object is said to be an instance of a class and
to evolve according to the definitions of its class. Syntacti-
cally, a class definition is a named box. In this box the con-
stituents of the class are defined and related. The main con-
stituents are: a state schema, an initial state schema and op-
eration schemas. Consider the following specification of the
classStation which denotes a store of messages of a given
type �Msg�. The class contains an operation to send out a
message to aCar class that contains an operation to receive
a message.

Station

s � �Msg



...talk

switch switch

talk

b2:Baseb1:Base b1:Base b2:Base... ...

Figure 1. stations and a car

SendOut
	�s�
x� � Msg
x� � s � s� � s � 	x�


Car

s � �Msg
INIT

s � �

Receive
	�s�
x
 � Msg
x
 �� s � s� � s 
 	x



In this example, our classesStation andCar have one at-
tribute s denoting a set of elements of the predefined type
Msg. Operation schemas have a	-list of those attributes
whose values may change. By convention, no	-list means
no attribute changes value. Every operation schema implic-
itly includes the state schema in un-primed forms (the state
before the operation) and primed forms � (the state after the
operation).
In this example, operationReceive in Car class adds a given
input x
 to the existing set (an identifier ending in
 de-
notes an input). OperationSendOut of Station class outputs
a valuex� defined as one element ofs and reducess by delet-
ing x� from the original set (an identifier ending in� denotes
an output).
In Object-Z, the communication between objects can be
modeled by the parallel operator�. For example, if

st � Station� c � Car

then

st�SendOut � c�Receive

captures that a message has been sent from a stationst to a
carc. The parallel operator� joins constraints and equates
variables with the same name and also equates and hides
any input variable to one of the components of� with any
output from the other component that has the same name
(i.e. the inputs and outputs are denoted by the same identi-
fier apart from ? and ! decorations).

Difficulty with communication dynamics

Object-Z can be used to model fixed communication topolo-
gies and also can be effective for modeling any dynamic
systems with its reference semantics. However our focus
is to bring the power of�-calculus and Object-Z together
without heavily reply on cross referencing. This motivates
our work on embedding�-calculus constructs into Object-
Z.

3. Linking � with Object-Z

Various modeling methods can be used in an effective com-
bination for designing complex systems if the semantic
links between those methods can be clearly established. The
semantic/syntax integration of those methods would be a
consequence of well defined semantic links. In PiOZ, the
fundamental semantic links between�-calculus and Object-
Z are:

� channels in�-calculus are semantically identified as
state variables in Object-Z classes;

� processes and input guards in�-calculus are semanti-
cally identified to Object-Z operations which may per-
form state updates. For example,

c�y�� P � c�x�� Q ��

	�x�
x� � y

� �P � Q�



Furthermore, we enforce all communications must be
through channels. Since all input/output are�-channel
based, Z style input/output(
/�) parameters are replaced
in PiOZ by parameters coming from the�-calculus syn-
tax. Channels can be declared in two levels, class and oper-
ation.chan�X� is the predefined type that contains all chan-
nels that carry messages of typeX and a special valuenil
(i.e. nil � chan�X�) blocking any communication. For any
declarationst�� t� � chan�X�, t�� t� are treated as state vari-
ables declarations, the same as other Object-Z state vari-
ables (i.e. it’s possible thatt� �� t� or t� � t�). Since chan-
nels variables can be specified in the class invariant or state
guards so that the notion ofprivate channels can be mod-
elled.
Now consider the following additional requirements to the
previous stations-car example. Namely

� an arbitrary group of base stations (instead of just two
bases) are involved.

� talk channel can be passed back and forth between
bases (instead of just one switch).

� when a base station passes a message to the car, the
base station should have one less message in its col-
lection and the car should have one more message.

� the system has an active behaviour (either message
passing between a station and the car or communica-
tion link switches between stations) if a base station
has messages to send; it may terminate if all base sta-
tions do not have any messages (their ”s” variable is
the empty set).

A base station can

� send messages to the car if the car is in its region;

� pass the car communication channel to another base;
and

� wait for the car communication channel from another
base.

and it is specified by the following class

Base

s � �Msg
t � chan�Msg�

Out�x � s�
	�s�
s� � s� 	x


ChangeMode
	�t�
t� � nil

Send �� �s �� � � t �� nil� � t�y�� Out�y�
Pass�through � chan�chan�Msg��� ��

�t �� nil� � through�t�� ChangeMode
Wait�from � chan�chan�Msg��� ��

�t � nil� � from�t�

Note that variablet of the channel type can be included
in the	 list (as any other variable). The carrying type of
chan�Msg� can deduce the type of the variable ‘y’ in the op-
erationSend.
The car in this case is to take input messages from channel
t and record them (unbounded).

Car

s � �Msg
t � chan�Msg�

In�x � Msg�
	�s�
s� � s 
 	x


Listen �� t�y�� In�y�

Now instances ofBase andCar can be composed/linked to-
gether to form theSystem class:

System

ss � �
�
�Msg

[all groups of messages]
talk � chan�Msg� [station-car channel]
switch � chan�chan�Msg��

[stations channel]

bs � �
�

Base
car � Car

INIT

	b � bs � b�s
 � ss
�
�

a � bs � a�t � talk �
� b � �bs � 	a
� � b�t � nil

car�s � � � car�t � talk

Interact ��
��b � bs� �

b�Send � car�Listen �
�b�� b� � bs� �

b��Pass�switch� � b��Wait�switch��
� Interact

��� b � bs � b�s � �� � �

The system active behaviour with possible termination is
captured by the operationInteract.
System properties can be formulated. For example, no mes-
sage loss can be stated as:

System � car�s 
�	b � bs � b�s
 � � ss

This property always holds before and after eachInteract
cycle. The induction proof is given in Section 6.

4. Syntax and Typing

The main PiOZ extension to Object-Z is to include�-style
process definitions:



Class
OZDefinition
ProcessDefinition

A class has an Object-Z partOZDefinition which obeys
the conventional syntactic definition [23] except newly in-
troduced parametric operation. The original Object-Z op-
eration operators: parallel composition, nondeterministic
choice, sequential composition are replaced by�-process
operators.
The process partProcessDefinition is an extension of
the syntax of the�-calculus which includes state guard
and Object-Z operations specified in that class. We will
use a� b� � � � for object references,x� y� � � � for chan-
nels, v� u� v�� v�� � � � for variables, where we assume that
channels are included in variables,Op�v�� � � � � vn� for para-
metric operation,R for the process identifier which de-
fines a process definition,G for any expression in Object-Z
which serves as a guard, andT�� T�� � � � for types. It must
be noted that only monadic channels are used in PiOZ.

� ��� x�v� � x�v� � Op�v�� � � � � vn�
� a�Op�v�� � � � � vn�

Processes are defined as

P ��� � � � � P� Q � P � Q � P � Q
� �G� � P � R�x� � T�� � � � � xn � Tn�

The syntax of process definition is given by

R�x� � T�� � � � � xn � Tn� �� P

In order to avoid the confusion which might be caused
by the dot notation used both as the sequential composi-
tion in the�-calculus and the object reference in Object-
Z, we chose ‘� ’ for the sequential operator in the pro-
cess definition and reserve ‘�’ for the object reference.
ProcessDefinition in the above class is a collection of pro-
cess definitions of the following form:

R��x�� � T��� � � � � x�l � T�l� �� P�

� � �
Rn�xn� � Tn�� � � � � xnm � Tnm� �� Pn

4.1. Type System

In this section we will present an integrated typing system
for the PiOZ notation in which we will reconcile two differ-
ent type systems of Object-Z and the�-calculus.

4.2. Typing Rules of Object-Z

OZDefinition will be type-checked by the conventional typ-
ing rules of Object-Z [23]. The main purpose of our type

system is to ensure that communications between processes
are well typed and reduction rules are well defined.
We are not going into details of Object-Z type system and
assume that we have the following typing judgement rela-
tion for expressions in Object-Z:

� � OZ Expr

where� is a finite partial function from variables to types.
Hence, we have the following typing rule for Object-Z ex-
pressions:

Typing Rules (Object-Z):

� � OZ Expr

4.3. Type System for PiOZ

We will basically follow the typing system for process terms
in the�-calculus given by Sewell [22].
The following judgement relation will be used for typing
process definitions:

� � t�y�� Out�y� proc

The above typing judgement reads “under�, t�y�� Out�y� is
well-typed”. Any types which are defined in Object-Z can
be used as types in PiOZ processes so that Object-Z speci-
fication part and process definition part share the same�.

Typing Rules (Values):

�� x � T � x � T

Typing Rules (Processes):

� � x � chan �T� � � v � T � � P proc

� � x�v� � P proc

� � x � chan �T� � � v � T � � P proc

� � x�v� � P proc

� � P proc � � Q proc
� � P � Q proc

� � P proc � � Q proc
� � P � Q proc

� � � proc

Typing Rules (OZ Processes):
The last two rules allowOp not to have any parameter.



� � G � � P proc

� � �G� � P proc

� � v� � T� � � �� � vn � Tn � � Q proc

� � R�v� � T�� � � � � vn � Tn� �	 Q proc

� � Op�x�� � � � � xn�

� � Op�x� � � � � xn� proc

� � a�Op�x�� � � � � xn�

� � a�Op�x�� � � � � xn� proc

5. Semantics and Derivation

In this section we present a formal description of the opera-
tional behaviour of PiOZ specifications. In this way we pro-
vide a dynamic description of the interaction and commu-
nication among processes by taking care of the static state-
based description provided by OZ specification.

5.1. Operational Semantics

Starting from a basic formalization of the operational se-
mantics of the�-calculus given by a labelled transi-
tion system (see [17]), we present an abstract machine
� ProcTerms � States� 	

�

�� � � Actions
 � where
ProcTerms represents the set of all processes and pro-
cess definitions, andStates represents the set of all states.
We work with configurations of form� P� 	 � whereP is
a process term and	 is a state. We have two kinds of tran-
sitions: one for the evolution of objects and another
for their interaction. The transitions from a configura-
tion to another configuration are described by a transition
relation. For object evolution the transition relation is de-
fined by�� �ProcTerms�States���ProcTerms�States�.
For object interaction the transition relation is defined by
�� �ProcTerms�States��Actions��ProcTerms�States�.
According to the case, we write either
� P� 	 � �� � P�� 	� � or� P� 	 �

�

�� � P�� 	� �
where	 and	� are semantic functions inStates which rep-
resent the states before and after the object evolution.
� is an action defined by

� ��� x � x

We use the actions� to label the input and output guarded
processes.
The reduction relation is defined by the structural congru-
ence and derivation rules. The followings are structural con-
gruences which will be used by PiOZ:

� P�� � P, P�Q � Q�P, �P�Q��R � P��Q�R�,

� P � � � P, P � Q � Q � P, �P � Q� � R � P � �Q � R�,

� �� P � P, P� � � P.

Before we start to define derivation rules, we need some def-
initions for the validity of Object-Z expressions. The fact
that a state guardG is valid under the semantic function	
is denoted by the following notation:

	 � G

which readsG is valid under the semantic function	. The
fact that an operationOp�x�� � � � � xn� is valid under the se-
mantic function	� 	 � is denoted by

	� 	�
� Op�x�� � � � � xn�

We describe the operational behaviour of PiOZ by the
derivation rules presented in Table 1. These rules are ap-
plied to systems of concurrent objects. Each object has its
own evolution and from time to time two objects can inter-
act along the channels they share. We don’t consider concur-
rent processes running inside the same object. This means
that we do not consider concurrent OOP. In some sense, we
present an alternative to concurrent OOP, another way of in-
cluding concurrency and mobility. We use the actions� to
label the input and output guarded processes. Two rules are
devoted to our guarded processesx�v�� P andx�v�� P.
Dynamic semantics derivations are related to execution.
Modern programming languages (such as ML and Java) are
”type safe”; this means that certain kinds of mismatches
cannot arise during execution. Type safety is a relation be-
tween the static and dynamic semantics. Type safety pro-
vides information about the execution of well-typed pro-
grams. Our derivation rules consider only well-typed PiOZ
expressions.
The communication between two objects is coming together
with name/value passing. This name/value passing is de-
scribed by the rule

�� ��

� � a�Op� �� ��

� � b�Op�

� a�Op� � b�Op�� � ��� �� ��

� � ���

� � �� �
a �	 b

where the states	�

�
and	�

�
represent the result ofa�Op� and

b�Op� respectively. The name/value passing is determined
by the final state	�

�
� �	�

�
� 	�. Note that there is no inter-

ference betweena�Op� andb�Op� (simply because two dif-
ferent objects do not share common state). Therefore the fi-
nal state is equivalent to	�

�
� �	�

�
� 	�.

We consider anobject propagation. This refer to the fact
that, for instance, when we havecar�Listen, then we apply
our expansion rules and we gett�y�� car�In�y�. We use the
following rules to expand expressions associated with ob-
ject references.

Expansion Rules:



expanda�G � P� 	 �expanda�G�� � expanda�P�
expanda�P � Q� 	 expanda�P� � expanda�Q�

expanda�P � Q� 	 expanda�P� � expanda�Q�

expanda�P� Q� 	 expanda�P�� expanda�Q�

expanda�x�v�� 	 x�v�
expanda�x�v�� 	 x�v�

expanda��� 	 �

expanda�Op�v�� � � � � vn� 	 a�Op�v�� � � � � vn�

whereexpanda�G� will follow the rules of object reference
in Object-Z.

6. Reasoning and Verification

In order to verifyinvariant andliveness properties we will
adopt the verification procedure proposed by Evans [8].
His original idea is to verify those properties for concur-
rent Z specifications by using assertional methods proposed
by Misra and Chandy [3]. PiOZ is an integration of the�-
calculus and Object-Z so that we need to accommodate the
method both in process algebraic and object-oriented set-
tings.

Theorem 1 (no message loss)

car�s 
�	b � bs � b�s
 �� ss

Proof: We need to prove the following cases:

INIT � car�s 
�	b � bs � b�s
 �� ss

and for eachInteract circle,

Interact � car�s 
�	b � bs � b�s
 �� ss

� car�s� 
�	b � bs � b�s�
 �� ss

Note thatss is not primed, since it is defined as a global con-
stant.
Any object specification in the Object-Z part is treated as
logical formulas which are referenced in object reference
notation in proofs.
[Initialization]

INIT � 	b � bs � b�s
 � ss
� �	b � bs � b�s
 �� ss

� � 
�	b � bs � b�s
 �� ss

� car�s 
�	b � bs � b�s
 �� ss

[Operations]

Basically, operationInteract has three branches:

1. �b � bs� � b�Send � car�Listen

2. �b�� b� � bs� � b��Pass�switch� � b��Wait�switch�

3. �� b � bs � b�s � �� � �

For case 1, by using the expansion rules for expressions, we
have

�b � bs� � b�Send � car�Listen �
�b � bs � b�s �� � � t �� nil� �

t�y�� b�Out�y� � t�y�� car�In�y��
b � bs � y � Msg � b�s �� � � t �� nil �

b�s� � b�s� 	y
 � car�s� � car�s 
 	y


where we have used the following expansions of operation
schemas

b�Out�y� � b�s� � b�s � 	y

car�In�y� � car�s� � car�s 
 	y


and two basic principles such that all guards are combined
as hypotheses, and that input variables of input channel and
output value of its complementary output channel in com-
munication is regarded as equation.
Based on the following lemma:

Lemma 1

1. b � bs ��	bb � bs � bb�s
 	�	bb � bs � 	b
 � bb�s
 �

b�s
2. b � bs � 	bb � bs � 	b
 � bb�s�
 	 	bb � bs � 	b
 � bb�s


we can deduce

car�s� ��	bb � bs � bb�s�
 	

car�s � 	y
 ��	bb � bs � bb�s�
 	

car�s � 	y
 ��	bb � bs � 	b
 � bb�s�
 � b�s� 	

car�s � 	y
 ��	bb � bs � 	b
 � bb�s�
 � b�s � 	y
 	

car�s � 	y
 ��	bb � bs � 	b
 � bb�s
 � b�s � 	y
 	

car�s ��	bb � bs � 	b
 � bb�s
 � b�s 	

car�s ��	bb � bs � bb�s
 	� ss

For cases 2 and 3, the property hold obviously since there
is no state updates on message variables. The property is
proved, by induction.

7. Related Work and Conclusion

Methods integration has become a recent research trend in
software specification and design. In graphical area, many
object-oriented methods merged into one, the UML. In for-
mal symbolic area, methods integration is even more mo-
tivated as many traditional formal methods do not scale-up
well. Formal methods integration is a recent research fo-
cus [1, 14, 2]. Much methods integration efforts are concen-
trated on blending Z with either CSP [9, 16, 26, 24, 30] or
CCS [12, 27]. However, the notion of dynamic communica-
tion configuration (mobility) of�-calculus offers significant



�R��

� expand
��var��P	v��x�� � � � � vn�xn
�� � � �� � Q� �� �

� var�R�v�� � � � � vn�� � � �� � Q� �� �
R�x� � T�� � � � � xn � Tn� �	 P

�R��

�� ��
� Op�v�� � � � � vn�

� Op�x�� � � � � xn� � P� � � �� � P� �� � �R��

� P� � � �� � P�� �� �

� P � Q� � � �� � P� � Q� �� �

�R��

�� ��

� � a�Op��x�� � � � � xn� �� ��

� � b�Op��y�� � � � � ym�

� a�Op��x�� � � � � xn� � b�Op��y�� � � � � ym�� � � �� � �� ��

� � ���

� � �� �
a �	 b

�R��

� x�v�� P� � �
x

�� � P� � � � w�u�� Q� � �
w
�� � Q� � �

� x�v�� P � w�u�� Q� � � �� � �P � Q�� � � 	�u� ��v��
 �
��x� 	 ��w� �	 nil

�R��

� � pred

� �pred� � P� � � �� � P� � � �R��

� � �x � T � p�x�� � P

� �x � T � p�x�� � P� � � �� � P� � � 	�x� � v � p�v��
 �

�R	�

� P� � ���� P�� �� �

� P� Q� � ���� P�� Q� �� � �R
�

� P� � � �� � P�� �� �

� P � Q� � � �� � P�� �� � �R���

� P� � � �� � P�� �� � P� � P��

� P� � � �� � P��� �� �

Table 1. Derivation rules of PiOZ

power and extra dimensions if it can be incorporated with a
state-based formalism. An attempt to define a machine-like
(state-based) formalism for the�-calculus was presented in
[4]. Incorporating the dynamic communication configura-
tion of �-calculus with a state-based formalism is the cen-
tral issue which this paper tries to resolve.

PiOZ builds on ideas from our earlier work in [16, 27]. For
instance, the work in [16] influences our approach to treat
the Object-Z operation and�-calculus process as the same
semantic and syntactic entity in PiOZ. The new ideas of
this work is to use channel-typed statevariables to define
the communication interface of PiOZ objects. In particu-
lar, the�-calculus input guard (binding operator) is given
a state-update semantics. As a result, the formal opera-
tional semantics of PiOZ integrates effectively the Object-
Z state transition semantics and�-calculus reduction rules,
and provides a foundation for reasoning about system prop-
erties in PiOZ. The Z style of input/output(
/�) are com-
pletely replaced by channel input/output indicators with
parameterised processes. PiOZ not only extends Object-
Z with advanced�-style dynamic communicating capa-
bilities, but also supports�-style instance level reductions
(derivation/animation). The typing rules of PiOZ has been
constructed based on�-calculus and Object-Z typing rules.
The major difference of PiOZ to most state/event meth-
ods integration is obvious:�-style dynamic communicat-
ing configuration is supported by PiOZ, while others fol-
lowed the CSP-style of fixed communicating configura-
tion. Note that our recent work on mobile Object-Z [28]

is similar to the Mobile Unity’s work [11] (an extension to
Unity [3]). Mobile Object-Z and mobile unity focus on lo-
cality. Mobile Object-Z has built the mobile primitives such
as “go(Address)” and “here(Address)” within the Object-
Z notation, which is very different from the approach pre-
sented in this paper — the focus of PiOZ is on embedding
�-calculus into Object-Z to support dynamic communica-
tion configurations.
One of the areas of future work will be on tools support.
PiOZ preserves in large part both the syntax and semantics
of Object-Z and�-calculus and hence may potentially ben-
efit from the body of experience developed in the use of and
tool support for the individual notations. Our operational se-
mantics with�-style instance level reductions may provide
useful guidelines for developing a PiOZ analysis/animation
tool. We have developed the XML environment for PiOZ
and currently investigating the checking and visualization
tools for PiOZ based on our recent Object-Z type check-
ing and visualisation tool [6] and the various�-calculus
checking tools [5, 20, 29]. Recent research work on encod-
ing of �-calculus and Object-Z into Isabelle/HOL [21, 25]
will also provide useful foundations for the future embed-
ding PiOZ into a theorem prover.
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